A Hybrid Approach to Recommender Systems based on Matrix Factorization
نویسندگان
چکیده
Due to the huge amount of information available online, the need of personalization and filtering systems is growing permanently. Recommendation systems constitute a specific type of information filtering technique that attempt to present items according to the interest expressed by a user. Commonly online recommender are employed for e-commerce applications or customer adapted websites. In general, there exist two basic types of recommendation techniques, namely contentbased filtering and collaborative filtering. Whereas content-based filtering methods examine items previously favored by the actual user, collaborative filtering computes recommendations based on the information about similar items or users. In our work we combine both techniques into a hybrid approach, where supplementary content features are employed to improve the accuracy of collaborative filtering. For the development of our hybrid recommender we utilized the well-known MovieLens rating data as well as the IMDB online movie archive. The content information retrieved from IMDB is converted into a notation that is useable for our hybrid approach. Rating and content data are both normalized separately, before the combined information is utilized by our recommendation algorithm. In order to reduce the computational effort of our hybrid model, we furthermore factorize the extended rating matrix by means of singular value decomposition. A prototype system of our novel hybrid recommender was implemented in MATLAB programming language. By means of various experiments, we could demonstrate that the extracted content features are beneficial to our underlying rating prediction algorithm. In addition, we discover a way to reveal latent feature relations, which can be used to generate more individual and accurate recommendations.
منابع مشابه
A new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009